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Concepts to be covered
1. Survival curve/function
2. Hazard rate
3. Censored data
4. Kaplan-Meier estimate of survival distrib
5. Hazard ratio
6. Proportional hazards assumption
7. Comparing survival curves
8. Proportional hazards regression analysis
9. Time-varying covariates



When is Survival Analysis used?

• When the outcome of interest is the
occurrence of an event, and you have
information on:
– Whether the event occurred, and
– When the event occurred (time or date)

• Sometimes called “Time-to-event” data



Examples of outcomes

• Death
• Heart attack and/or CV surgery
• Smoking first cigarette during a quit

attempt
• Birth of a child (maternal age or

pregnancy duration)
• First use of an illicit drug
• Hospitalization for a psychiatric disorder



Inappropriate outcomes

• Birth weight, blood pressure - not events
• Smoking status - not an event
• # cigarettes smoked/day - not an event
• Birth by C-section - event, but not timed
• Whether patient/subject takes his/her

prescribed medications, brushes teeth in
the morning, or has ever tried to quit
smoking - all events, but outcomes are
not linked to the passage of time



Questionable outcomes

• Onset of alcohol dependence or
various chronic diseases (Type II
diabetes, fibromyalgia, rheumatoid
arthritis, atherosclerosis) - often difficult
to date the onset



Suppose you do research on fruit flies and
you have a jar filled with 1000 male adult
fruit flies.

Suppose, also, that every day 3% of your
fruit flies die; none are born (all males!).

What happens to your population of fruit
flies over the course of a month?

Survival function
heuristic conceptualization



At the end of day one, 30 fruit flies have
died, leaving 970 alive.

During day 2, 3% of 970 (=29) fruit flies
die, leaving 941 at the end of the day.

During day 3, 3% of 941 (=28) fruit flies
die, leaving 913.

…….
During day 30, 3% of 413 (=12) fruit flies

die, leaving 401.

Survival function
heuristic conceptualization



Example of Survival Curve 

when Hazard Rate is Constant
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Survival is a function of time - the more
time that elapses the smaller is the
probability that the event has not
occurred

The survival function gives the probability,
for each value of t (time), of the outcome
event not having occurred

S(t) = Pr(event not occurring prior to time t)

Survival function



Examples of Survival Curves 

when Hazard Rate is Constant
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Examples of Survival Curves 

when Hazard Rate is Constant

Median Survival Time
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Example of Survival Curve and

Corresponding Failure Curve
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• You’ve seen a couple of survival
functions (for hypothetical data with a
constant event rate)
– survival curves are monotonically decreasing

(they can never curve upwards)
– median survival time: equals the time when

50% of the population have had the event
• Failure function is “the complement” of

the survival function:  F(t) = 1 - S(t)

Where are we?



The hazard rate is the instantaneous rate
at which events occur (pretty abstract)

Hazard Rate



Analogy:  Think about a savings account
in which you deposit $1000 and leave it
for 1 year.  The bank says its interest
rate (APR) is 4%/yr.  If they “compound
interest daily (or continuously)” then
after one year, you will actually earn
$40.81 interest (APY = 4.081%/yr),  due
to earning interest on interest.
If APR=20%, then APY=22.14%.

The Hazard Rate is analogous to the APR.

Hazard Rate



In the earlier survival function for a
constant mortality rate of 3%/day, the
hazard rate was 3.05%/day.  For the
survival function with a constant
mortality rate of 6%/day, the hazard rate
was 6.19%/day.  (the hazard rate is
always a little more than the actual event
rate)

Hazard Rate



When the hazard rate (λ) is constant, then

  S(t) = e-λt

Note that S(t) equals 1.00 (i.e., 100% survival) when t=0
S(t) is an “exponential function” implying that the distribution

of survival times has an “exponential distribution”
Median survival time = -ln(0.5) / λ = 0.693 / λ, and

         λ = -ln(0.5) / median survival time

Relationship of Survival
Function to Hazard Rate



Hazard functions

In the above examples, we have assumed that
the hazard rate is a constant, perhaps a
different constant for different groups.

However, this is a very restrictive assumption.
Other models assume that the hazard rate

changes, usually as a function of time [λ(t)];
perhaps increasing over time or decreasing
over time.  Two extensions of the exponential
model are the Weibull model and the
Gompertz model.



Examples of events where
hazard rate changes over time
All cause mortality:  is elevated during first year

of life, drops and remains quite low through
about age 30, and then increases steadily
over the rest of the lifespan.

Initiation of smoking:  very low during pre-
adolescence, increases through teen years,
and decreases markedly after about age 20;
if one hasn’t started smoking by age 30, the
chances of becoming a smoker are very low.



Why should you care about
hazard rates?

Because they are considered the “fundamental
parameter” or “driving mechanism” for the
survival function: the survival distribution is
what we can observe, but it is the hazard
function that we want to model.

Again, it is analogous to an interest rate:  you
can watch your savings account grow, but if
you want to understand “the process” by
which it grows, you have to know the
interest rate. (Another parallel: interest
rates  also change over time.)



• A smoking cessation study designed to:
– test whether individuals randomly assigned

to a structured social support program are
more successful at quitting than those who
receive general advice about quitting but are
not provided the structured support program.

– Duration of study:  3 weeks (1 week prior to
start of quit attempt and 2 weeks after)

– Primary outcome:  time from the start of the
quit attempt until participant first smokes a
cigarette

A real example



• Could use a chi-square test (or logistic
regression) to test whether those in the
treatment group (T) are more likely to go
14 days without smoking, a binary
outcome, than those in the control group
(C).

• Could test whether the average (or
median) time from quitting until the first
cigarette is longer in group T than group C.

• Issue:  censored observations

Alternative analyses



Censored observations

• For both types of analysis, how do you
treat someone who drops out of the
study after 8 days, without having yet
smoked?

• When time until first cigarette is the
primary outcome, what value do you
use for those who have still not smoked
at the end of the 14-day observation
period?  14?  15?  Missing data?



• Distribution-free estimation of survival
curve
– Kaplan-Meier (aka “product limit”) method
– handles censored data

Survival function - a real
example



ID Hours Status
307 80.0 lapse
309 26.1 lapse
318 122.4 censored
325 346.8 censored
326 103.3 lapse
327 365.3 censored
328 302.4 lapse
329 366.1 censored
331 23.8 lapse
333 252.7 lapse
337 32.4 lapse
338 130.6 lapse
341 340.0 censored
352 24.3 lapse
354 21.6 lapse
359 34.8 lapse
364 82.4 lapse
365 75.5 lapse
366 346.9 censored
370 347.6 censored
373 10.5 lapse
376 70.9 lapse
380 322.4 censored
384 33.3 lapse
385 366.0 censored
387 28.3 lapse
391 45.1 lapse
393 338.9 censored
398 75.8 lapse

Raw data for the control
group in a smoking 
cessation study.
N = 29
Hours: number of hours

from beginning of
quit attempt until
first cigarette (lapse)
or observation
“censored”

Censored: last observation
of subject, at which
time the target event
has not occurred
(yet?)



Plot of raw data, distinguishing

first lapses from censored observations
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ID Hours Status
373 10.5 lapse
354 21.6 lapse
331 23.8 lapse
352 24.3 lapse
309 26.1 lapse
387 28.3 lapse
337 32.4 lapse
384 33.3 lapse
359 34.8 lapse
391 45.1 lapse
376 70.9 lapse
365 75.5 lapse
398 75.8 lapse
307 80.0 lapse
364 82.4 lapse
326 103.3 lapse
318 122.4 censored
338 130.6 lapse
333 252.7 lapse
328 302.4 lapse
380 322.4 censored
393 338.9 censored
341 340.0 censored
325 346.8 censored
366 346.9 censored
370 347.6 censored
327 365.3 censored
385 366.0 censored
329 366.1 censored

Data sorted by Hours



Sorted raw data, distinguishing

first lapses from censored observations
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Can begin to estimate
survival function

But, what do we do
with censored 
observations?

  ID    Hours     Status Cum Pct % Surviving
373 10.5 lapse 3.4% 96.6%
354 21.6 lapse 6.9% 93.1%
331 23.8 lapse 10.3% 89.7%
352 24.3 lapse 13.8% 86.2%
309 26.1 lapse 17.2% 82.8%
387 28.3 lapse 20.7% 79.3%
337 32.4 lapse 24.1% 75.9%
384 33.3 lapse 27.6% 72.4%
359 34.8 lapse 31.0% 69.0%
391 45.1 lapse 34.5% 65.5%
376 70.9 lapse 37.9% 62.1%
365 75.5 lapse 41.4% 58.6%
398 75.8 lapse 44.8% 55.2%
307 80.0 lapse 48.3% 51.7%
364 82.4 lapse 51.7% 48.3%
326 103.3 lapse 55.2% 44.8%
318 122.4 censored 58.6%
338 130.6 lapse 62.1%
333 252.7 lapse 65.5%
328 302.4 lapse 69.0%
380 322.4 censored 72.4%
393 338.9 censored 75.9%
341 340.0 censored 79.3%
325 346.8 censored 82.8%
366 346.9 censored 86.2%
370 347.6 censored 89.7%
327 365.3 censored 93.1%
385 366.0 censored 96.6%
329 366.1 censored 100.0%



  ID  Hours Status Cum Pct % Surviving
373 10.5 lapse 3.4% 96.6%      = 1.00 (1 - 1/29)
354 21.6 lapse 6.9% 93.1%      = .966 (1 - 1/28)
331 23.8 lapse 10.3% 89.7%      = .931 (1 - 1/27)
352 24.3 lapse 13.8% 86.2%      = .897 (1 - 1/26)
309 26.1 lapse 17.2% 82.8%      = .862 (1 - 1/25)
387 28.3 lapse 20.7% 79.3%      = .828 (1 - 1/24)
337 32.4 lapse 24.1% 75.9%      = .793 (1 - 1/23)
384 33.3 lapse 27.6% 72.4%      = .759 (1 - 1/22)
359 34.8 lapse 31.0% 69.0%      = .724 (1 - 1/21)
391 45.1 lapse 34.5% 65.5%      = .690 (1 - 1/20)
376 70.9 lapse 37.9% 62.1%      = .655 (1 - 1/19)
365 75.5 lapse 41.4% 58.6%      = .621 (1 - 1/18)
398 75.8 lapse 44.8% 55.2%      = .586 (1 - 1/17)
307 80.0 lapse 48.3% 51.7%      = .552 (1 - 1/16)
364 82.4 lapse 51.7% 48.3%      = .517 (1 - 1/15)
326 103.3 lapse 55.2% 44.8%      = .483 (1 - 1/14)
318 122.4 censored 58.6% (44.8%)
338 130.6 lapse 62.1% 41.1%      = .448 (1 - 1/12)

Kaplan-
Meier
estimate
of survival
function/
distribution



  ID  Hours Status Cum Pct % Surviving
373 10.5 lapse 3.4% 96.6%      = 1.00 (1 - 1/29)
354 21.6 lapse 6.9% 93.1%      = .966 (1 - 1/28)
331 23.8 lapse 10.3% 89.7%      = .931 (1 - 1/27)
352 24.3 lapse 13.8% 86.2%      = .897 (1 - 1/26)
309 26.1 lapse 17.2% 82.8%      = .862 (1 - 1/25)
387 28.3 lapse 20.7% 79.3%      = .828 (1 - 1/24)
337 32.4 lapse 24.1% 75.9%      = .793 (1 - 1/23)
384 33.3 lapse 27.6% 72.4%      = .759 (1 - 1/22)
359 34.8 lapse 31.0% 69.0%      = .724 (1 - 1/21)
391 45.1 lapse 34.5% 65.5%      = .690 (1 - 1/20)
376 70.9 lapse 37.9% 62.1%      = .655 (1 - 1/19)
365 75.5 lapse 41.4% 58.6%      = .621 (1 - 1/18)
398 75.8 lapse 44.8% 55.2%      = .586 (1 - 1/17)
307 80.0 lapse 48.3% 51.7%      = .552 (1 - 1/16)
364 82.4 lapse 51.7% 48.3%      = .517 (1 - 1/15)
326 103.3 lapse 55.2% 44.8%      = .483 (1 - 1/14)
318 122.4 censored 58.6% (44.8%)
338 130.6 lapse 62.1% 41.1%      = .448 (1 - 1/12)
333 252.7 lapse 65.5% 37.4%      = .411 (1 - 1/11)
328 302.4 lapse 69.0% 33.6%      = .387 (1 - 1/10)
380 322.4 censored 72.4% (33.6%)
393 338.9 censored 75.9%  (33.6%) 
341 340.0 censored 79.3%  (33.6%) 
325 346.8 censored 82.8%  (33.6%) 
366 346.9 censored 86.2%  (33.6%) 
370 347.6 censored 89.7%  (33.6%) 
327 365.3 censored 93.1%  (33.6%) 
385 366.0 censored 96.6%  (33.6%) 
329 366.1 censored 100.0%  (33.6%) 

Kaplan-
Meier
estimate
of survival
function/
distribution



"Success" during First 2 Weeks of Smoking 

Cessation Attempt, Control Group (K-M curve)
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"Success" during First 2 Weeks of Smoking 

Cessation Attempt, Kaplan-Meier Curves
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Censoring and Kaplan-Meier
• Kaplan-Meier method allows us to

estimate the distribution of survival times
– It handles censored observations by

utilizing the information that no event
occurred prior to the time of censoring,
while recognizing that we do not know if or
when the event occurred after this time.

– Assumes the censoring is “non-informative,”
i.e., that the occurrence/timing of censored
observations is unrelated to their risk of an
event



• Examples where censoring likely to be
non-informative:
– Participant moved because company moved
– Participant killed by lightning
– Administrative censoring (trial ended)
– Study equipment failed

• Examples where censoring may be
informative:
– Participant withdrew or dropped out of sight,

perhaps because she was about to begin
smoking



Hazard ratio

• We often test whether one group has a
higher mean than the other (assuming that
the shape of the distribution is similar in the
two groups; i.e., normal with the same s.d.).

• In logistic regression, we test whether the
odds of a binary outcome differs between
two groups (odds ratio differs from 1.0)



Hazard ratio
• In survival analysis we most often test for

differences in survival by assuming that the
hazard function λ(t) in one group is
proportional to that in the other and testing
whether λTx(t) / λC(t) differs from 1.0.

• λTx(t) / λC(t) is called the “hazard ratio” and is
very closely related to the concept of relative
risk.

• Note: when proportional hazards assumption
is true, we do not expect survival curves to
cross (except by chance)



"Success" during First 2 Weeks of Smoking 

Cessation Attempt, Kaplan-Meier Curves
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Testing the difference between
two survival distributions

• Non-parametric tests of whether one
distribution is “reliably” above/below
other
– Log-rank test (Mantel)

• most powerful when two distributions differ by a
fixed proportion (λTx(t) / λC(t) = constant)

• gives greater weight to later survival times
– Wilcoxon test (Gehan)

• gives greater weight to earlier events
– Each yields a chi-square statistic w/ df=1



Did social support tx delay
resumption of smoking?

                                                           Pr >
Test             Chi-Square      DF    Chi-Square

Log-Rank        0.2024           1         0.6528
Wilcoxon         0.1494           1         0.6991

Answer:  group difference in survival curves
does not approach statistical significance
(perhaps study underpowered)



Testing the difference between
two survival distributions

• Non-parametric tests of whether the p-th
percentile (e.g. median) differs in the two
distributions
– each survival estimate for the survival

distribution has an associated standard
error/variance

– these can be used to create a chi-square or
z-test of equality

– issue: choice of percentile(s)



Models that adjust for covariates
• Stratified analyses

– estimate separate survival distributions for
each stratum of a 3rd variable and test for
treatment/control differences within each
stratum (issue: how to pool across strata)

• Hazard regression analysis (Cox
proportional hazards model)
– regression-like model that partials out the

effects of one or more 3rd variables
– assumes each variable has multiplicative

effect on survival



Cox proportional hazards
regression analysis

                            Parameter      Standard
Variable     DF      Estimate           Error
Group          1       -0.15040         0.33478

Hazard         95% Hazard Ratio
    Ratio          Confidence Limits
    0.860           0.446       1.658

λTx(t) / λC(t) = .86 (ns)
(likelihood ratio test equivalent to log-rank test)



                            Parameter      Standard
Variable     DF      Estimate           Error
Group          1       -0.15301         0.33535
Sex              1       -0.05020         0.36271

Hazard         95% Hazard Ratio
    Ratio          Confidence Limits
   0.858           0.445       1.656

  0.951           0.467       1.936

λTx(t) / λC(t) = .86 (ns)



Time-varying covariates

• Can be used to handle covariates that
change over time
– use of nicotine patch/gum on some days
– whether participant took medication
– changes in participant adherence to

protocol
– weekdays vs weekends



Concepts covered
1. Survival curve/function
2. Hazard rate
3. Censored data
4. Kaplan-Meier estimate of survival curve
5. Hazard ratio
6. Proportional hazards assumption
7. Comparing survival curves
8. Proportional hazards regression analysis
9. Time-varying covariates


